CHEMISTRY CRASH COURSE **LECTURE - 05** ## **TOPICS: Equilibrium I and II** - In which one of the following reactions, K_p is less than K_a? - (a) $2SO_{3(g)} \implies 2SO_{2(g)} + O_{2(g)}$ - (b) $N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)}$ - (c) $PCl5_{(g)} \longrightarrow PCl_{3(g)} + Cl_{2(g)}$ - (d) $H_{2(g)} + I_{2(g)} = 2HI_{(g)}$ - 2. The equilibrium constants for the reaction,. $$Zn_{(s)} + Cu^{2+}_{(aq)} \Longrightarrow Zn^{2+}_{(aq)} + Cu_{(s)}$$ and $$Cu_{(s)} + 2Ag^{+}_{(aq)} \Longrightarrow Cu^{2+}_{(aq)} + 2g_{(s)}$$ are K₁ and K₂, respectively. Then the equalibrium constant for the reaction, $$Zn_{(s)} + 2Ag^{+}_{(aq)} \Longrightarrow Zn^{2+}_{(aq)} + 2A_{(s)}$$ will be - (a) $K_1 + K_2$ - (b) $K_1 \times K$, - (c) K_1/K_2 - (d) $K_1 K_2$ - For the system $Ag_{(g)} + 2B_{(g)} \rightleftharpoons C_{(g)}$, the equilibrium concentrations are $A = 0.06 \text{ mol } L^{-1}$, $B = 0.12 \text{ mol } L^{-1}$, C = 0.216 mol L^{-1} The K_{eq} for the reactions is - (a) 250 - (b) 416 - (c) 4×10^{-3} - (d) 125 - If 0.2 mol of $H_{2(g)}$ and 2.0 mol of $S_{(g)}$ are mixed in a 1 dm³ vessel at 90°C, the partial pressure of $H_2S_{(g)}$ formed according to the reaction $$H_{2(g)} + S_{(s)} \longrightarrow H_2S_{(g)}$$, $(K_p = 6.8 \times 10^{-2})$ would be - (a) 0.19 atm - (b) 0.38 atm - (c) 0.6 atm - (d) 0.072 atm - Which one of the following mixtures will give a solution with pH greater than 7? - (a) 50mL of 0.1 M HCL + 50 mL of 0.2 M NaCl - (b) 50mL of 0.1 M HCL + 50 mL of 0.1 M CH₃COONa - (c) 50mL of 0.1 M CH₂COOH + 50 mL of 0.1 M - (d) 50mL of $0.2 \text{ M H}_2\text{SO}_4 + 50 \text{ mL}$ of 0.3 MNaOH - 6. 40 mL of 0.1 m ammonium hydroxide is mixed with 20 mL of 0.1 M HCL. What is the pH of the mixture?(pK, of ammonia solution is 4.74) - (a) 4.74 - (b) 2.26 - (c) 9.26 - (d) 5 - 7. What is the decreasing order strength of the bases $$OH^{-}, NH_{2}^{-}H - C \equiv C^{-} \text{ and } C \equiv C^{-} > OH^{-}$$ - (a) $CH_3CH_2^- > NH_2^- > H C \equiv C^- > OH^-$ - (b) $H C \equiv C^{-} < CH_{3} CH_{2}^{-} > NH_{2}^{-} > OH^{-}$ - (c) $OH^- > NH_2^- > H C \equiv C^- > CH_3CH_2^-$ - (d) $NH_2^- > H C \equiv C^- > OH^- > CH_2CH_2^-$ - If S_1 , S_2 , S_3 and S_4 , are the solubilities of AgCl inn water, in 0.01 M CaCl₂, in 0.01 M Nacl and in 0.05 M AgNO₂ respectively at a certain temperature, the correct order of solubilities is - (a) $S_1 > S_2 > S_3 > S_4$ (b) $S_1 > S_2 > S_3 > S_4$ - (c) $S_1 > S_2 = S_3 > S_4$ (d) $S_1 > S_3 > S_4 > S_2$ - The pH of an aqueous solution of CH3COONa of concentrated C (M) is given by (a) $$7 - \frac{1}{2}pK_a + \frac{1}{2}\log C$$ (b) $$\frac{1}{2}pK_{\omega} + \frac{1}{2}pK_{b} + \frac{1}{2}\log C$$ (c) $$\frac{1}{2} pK_{\omega} - \frac{1}{2} pK_{b} - \frac{1}{2} log C$$ (d) $$\frac{1}{2}pK_{\omega} + \frac{1}{2}pK_{b} + \frac{1}{2}\log C$$ - 10. A buffer solution contains 0.1 mole of sodium acetate dissolved in 1000cm3 of 0.1M acid. To the above buffer solution, 0.1 mole sodium acetate is further added an dissolved. The pH of the resulting - (a) pK - (b) $pK_{a} + 2$ - (c) $pK_a \log 2$ (d) $pK_a + \log 2$ ## CHEMISTRY CRASH COURSE **LECTURE - 5** ## TOPICS: Equilibrium I and II (SOLUTION) **1. (b)**: $K_p = K_c(RT)^{\Delta n_g}$, $K_p < K_c$ when Δn_g is negative. **2. (b)**: *K* = product of equilibrium constants of step reactions. 3. (a): $K = \frac{[C]}{[A][B]^2} = \frac{0.216}{0.06 \times (0.12)^2} = 250$ **4. (b)**: Suppose x moles of H₂S have formed, then at equilibrium, $[H_2] = (0.2 - x)$, $[H_2S] = x$ $$p_{\text{H}_2} = \frac{0.2 - x}{0.2 - x + x} = \frac{0.2 - x}{0.2} \times P$$ $$p_{\text{H}_2\text{S}} = \frac{x}{0.2 - x + x} = \frac{x}{0.2} \times P$$ $$K_p = \frac{p_{\text{H}_2\text{S}}}{p_{\text{H}_2}}$$ i.e., $6.8 \times 10^{-2} = \frac{x}{0.2 - x}$ or 0.068(0.2 - x) = x or x = 0.0127 mol Pressure of 0.0127 mol of H₂S at 363 K in 1 L vessel, $$P = \frac{nRT}{V} = \frac{0.0127 \times 0.0821 \times 363}{1} = 0.38 \text{ atm}$$ **5. (c)** : All except (c) will be acidic. **6. (c)** : Since, ammonium hydroxide is 50% neutralised, hence [Salt] = [Base] pOH = p $$K_a + \log_{10} \frac{[\text{salt}]}{[\text{base}]} = 4.74 + \log_{10} 1$$ $$pOH = 4.74$$ $$\therefore$$ pH = 14 - 4.74 = 9.26 7. (a): The conjugate acids of the given bases are H₂O, NH₃, C₂H₂, CH₃CH₃. Their acidic strength are in the order H₂O > C₂H₂ > NH₃ > CH₃CH₃. A weak acid has a strong conjugate base. 8. **(b)**: $0.01 \text{ M CaCl}_2 = 0.02 \text{ M Cl}^-$, $0.01 \text{ M NaCl} = 0.01 \text{ M Cl}^-$, $0.05 \text{ M AgNO}_3 = 0.05 \text{ M Ag}^+$ $[\text{Ag}^+][\text{Cl}^-] = K_{sp} \text{ (const.)}.$ The concentration of common ion $\propto \frac{1}{\text{solubility}}$ **9. (d):** pH of hydrolysed salt of strong base and weak acid is given by $$pH = \frac{1}{2} pK_{w} + \frac{1}{2} pK_{a} + \frac{1}{2} \log C$$ **10. (d):** Number of moles of acetic acid = 0.1 mole Total number of moles of sodium acetate present in buffer solution = 0.1 + 0.1 = 0.2 mole $$\therefore pH = pK_a + \log \frac{[CH_3COONa]}{[CH_3COOH]}$$ $$= pK_a + \log \frac{0.2}{0.1} = pK_a + \log 2$$ $$\therefore pH = pK_a + \log 2$$